Skip navigation
User training | Reference and search service

Library catalog

EDS
b-on
More
resources
Content aggregators
Please use this identifier to cite or link to this item:

acessibilidade

http://hdl.handle.net/10071/20840
Full metadata record
acessibilidade
DC FieldValueLanguage
dc.contributor.authorRodrigues, P.-
dc.contributor.authorMartins, A.-
dc.contributor.authorKalakou, S.-
dc.contributor.authorMoura, F.-
dc.contributor.editorEsteve Codina, Francesc Soriguera, Lídia Montero, Miquel Estrada, M. Paz Linares-
dc.date.accessioned2020-11-20T11:26:48Z-
dc.date.available2020-11-20T11:26:48Z-
dc.date.issued2019-
dc.identifier.issn2352-1465-
dc.identifier.urihttp://hdl.handle.net/10071/20840-
dc.description.abstractThe growth of urban areas has made taxi service become increasingly more popular due to its ubiquity and flexibility when compared with, more rigid, public transportation modes. However, in big cities taxi service is still unbalanced, resulting in inefficiencies such as long waiting times and excessive vacant trips. This paper presents an exploratory taxi fleet service analysis and compares two forecast models aimed at predicting the spatiotemporal variation of short-term taxi demand. For this paper, we used a large sample with more than 1 million trips between 2014 and 2017, representing roughly 10% of Lisbon’s fleet. We analysed the spatiotemporal variation between pick-up and drop-off locations and how they are affected by weather conditions and points of interest. More, based on historic data, we built two models to predict the demand, ARIMA and Artificial Neural Network (ANN), and evaluated and compared the performance of both models. This study not only allows the direct comparison of a linear statistical model with a machine learning one, but also leads to a better comprehension of complex interactions surrounding different urban data sources using the taxi service as a probe to better understand urban mobility-on-demand and its needs.eng
dc.language.isoeng-
dc.rightsopenAccess-
dc.subjectTaxi demandeng
dc.subjectARIMAeng
dc.subjectArtificial Neural Networkeng
dc.titleSpatiotemporal variation of taxi demandeng
dc.typeconferenceObject-
dc.event.title22nd EURO Working Group on Transportation Meeting-
dc.event.typeConferênciapt
dc.event.locationBarcelonaeng
dc.event.date2019-
dc.pagination664 - 671-
dc.peerreviewedyes-
dc.journal22nd EURO Working Group on Transportation Meeting, EWGT 2019-
dc.volume47-
degois.publication.firstPage664-
degois.publication.lastPage671-
degois.publication.locationBarcelonaeng
degois.publication.titleSpatiotemporal variation of taxi demandeng
dc.date.updated2020-11-20T11:25:42Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.1016/j.trpro.2020.03.145-
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Civilpor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-62999-
iscte.alternateIdentifiers.scopus2-s2.0-85084654014-
Appears in Collections:BRU-CRI - Comunicações a conferências internacionais

Files in This Item:
acessibilidade
File Description SizeFormat 
Spatiotemporal Variation of Taxi Demand.pdfVersão Editora1.09 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.